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The validity of the recently proposed tentative improvement of the Davydov theory of intramolecular
vibrational transfer is discussed. It is shown that it contains a few principal shortcomings and cannot be a sound
ground for studies of the transport processes in molecular systems.
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In a recent paper �1� and in subsequent articles �2� Pang
has suggested that Davydov soliton theory �DST� �3�, with
some modifications of the original model Hamiltonian and
by virtue of the improved theoretical approach based upon a
new trial state, may be improved and used in the explanation
of energy transfer in molecular crystals such as acetanilide
�ACN�, � helix, etc. Unfortunately, as we shall demonstrate
below, the “improved” theory suffers from the number of
shortcomings, even more serious than the original one.

The modified model Hamiltonian is supplemented with
the additional exciton-phonon coupling term added with the
purpose of accounting for the effects of the modulation of the
resonant dipole-dipole energy caused by the molecular dis-
placements. It seems that the author is completely unaware
that this interaction had been introduced long ago by Davy-
dov and co-workers �4�, “revived” by Scott �5�, and conse-
quently does not represent any new improvements. More-
over, within the continuum treatment of the problem, all
these new coupling terms may be absorbed in the single one
with the joint coupling constant: the sum of the individual
ones. In such a way the original Davydov’s model Hamil-
tonian
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with precisely the same meaning of system parameters and
operators could be used as a theoretical basis for the “im-
proved” theory. Here, as usual, J denotes the intersite trans-
fer integral, operator Bn

†�Bn� describes the presence �absence�
of the excitation on nth lattice site; aq

†�aq� creates �annihi-
lates� phonon quanta with the frequency �q. �1=d� /dRo is
the modulation of the on-site energy, Fq
=2i�1�� /2M�q�1/2 sin qR0, denotes electron-phonon cou-
pling parameter �q=�B sin �qR0 /2�. Here �B=2�� /M�1/2 de-

notes the phonon bandwidth, � is a spring constant, M is the
mass of the molecular group and finally R0 is lattice constant.
Replacement of coupling parameter �1 by the effective one
would be sufficient, within the continuum approximation, to
include practically all effects coming from additional
exciton-phonon couplings.

Pang’s second improvement of DST consists in an alter-
native proposal of the vector of state of system that is, again,
chosen as a total product of exciton and phonon wave func-
tions �	�t��= �	�t��ex � �
�t��ph. The phonon-part of the vec-
tor of state is taken in precisely the same form as in DST;
i.e., as a product of the single-mode phonon coherent states
defined as an eigenstate of the phonon annihilation operator:
i.e., �
�=	q ��q� where aq ��q�=�q ��q�. The excitonic part,
in contrast to the original Davydov’s treatment, is taken in a
form of the so-called quasicoherent state and reads
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if the single exciton is excited in the system, and
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for the two-particle case. � is the normalization constant that
cannot be determined within the present method so �=1 is
usually taken.

Some doubts concerning the validity of that approach
have been raised recently by Cruzeiro-Hansson �6� who
pointed to some controversies in Pang’s theory. Unfortu-
nately, her criticism is based upon some qualitative argu-
ments without any detailed calculations and analysis in sup-
port or against the Pang theory. In particular, since she
admits that, in spite of the vague physical meaning of the
proposed trial state, it may give a lower estimate for the
ground state energy �GSE� of the system than DST, it re-
mains unclear whether or not Pang’s approach represents real
improvement of the DST.*Electronic address: dvk@im.ns.ac.yu
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It will be done here and for that purpose we shall calcu-
late the GSE of the system employing both Davydov’s ansatz
�DA� and Pang’s trial state. Comparison of the obtained re-
sults will clarify which approach is superior.

However, before that, let us point that the factorized an-
satz, the basis of both methods, holds in the adiabatic limit
2J / ��B�1 when semiclassical treatment of phonon sub-
system is justified �7�. At this stage we must underline that
the main shortcoming of both approaches is their application
to the problem of intramolecular energy transfer that does
not involve parameter regimes where the semiclassical ap-
proximation holds. In that respect the term “superior” refers
to the adiabatic limit only.

Before the explicit calculation of the system GS energy
we must discuss some properties of Davydov’s and Pang’s
trial states that were overlooked in �1,2�. The only difference
in both approaches lies in the specific choice of exciton part.
In particular, in the case of the single exciton self-trapping
�ST�, the basis of DA is the normalized wave function speci-
fied as

�	�t�� = �
n

	n�t�Bn
†�0�ex � ���t��,�	�t��	�t��

= 1 ⇒ �
n

�	n�2 = 1. �4�

For the soliton formation on the account of simultaneous ST
of the two excitons, the following ansatz state has been pro-
posed �8�

�	�t�� = �
m,n

	n,mBm
† Bn

†�0� � ���, 	m,n = 	n,m,

�	�t��	�t�� = 1, ⇒ �
n

�	n,m�2 =
1

2
. �5�

At this stage we must underline that the above-proposed trial
functions �both �4� and �5��, contrary to the Pang’s claim in
�1,2�, are the eigenstates of the exciton number operator. In
the mentioned reference Pang stated that, for the two-exciton
case, �	�t� ��nBn

†Bn �	�t��=4. This result stems from the
ad hoc introduced normalization constraint �m,n �	m,n�2=1
that if accepted would impose �	�t� �	�t��=2. If, however,
one works with the properly normalized trial states �i.e.,
�	�t� �	�t��=1� it follows that �m,n �	m,n�2=1/2, which im-
plies �	�t� ��nBn

†Bn �	�t��=2. The main difference of the so-
proposed trial states with respect to those specified by Eqs.
�2� and �3� are that the latter ones are not normalized to
unity. More precisely, instead of looking for normalization
constraints on exciton amplitudes 	n imposing �	 �	�=1,
Pang has postulated �n �	n�2=1, which, in accordance with
Eqs. �2� and �3� yields,

�	�	� = 2 for state �2�
5
2 for state �3� ,

�6�

i.e., in both cases �	 �	��1.
So, let us for the moment discuss the problem of the nor-

malization. It concerns the above ad hoc �postulated� intro-
duced normalization condition �n �	n�2=1, which cannot be

derived in accordance with the usual quantum-mechanical
procedure, i.e., imposing the normalization of the vector of
state: �	 �	�=1. Namely, such demand for the trial state �2�,
would lead to 1+�n �	n�2=1 while the choice of trial state in
the form �3� results in 1=1+�n �	n�2+ 1

2 ��n �	n�2�2. Both of
these equalities can be satisfied only for �n �	n�2=0.

Furthermore, another possibility of its determination on
the basis of the calculation of the expectation value of op-
erator of total exciton number leads to the paradox. Follow-
ing the general quantum-mechanical rules, we have

�	��n
Bn

†Bn�	�

�	�	�
� N . �7�

This expression after the straightforward calculations involv-
ing the substitution of the explicit expressions for �	 �	� and
�	 ��nBn

†Bn �	� leads to a controversy. Let us combine

�	�	� =1 + �n
�	n�2 state �2�
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�8�

and
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By means of the above expressions we found for the trial
state �2�

�
n

�	n�2 = N
1 + �
n

�	n�2� . �10�

This relation can never be satisfied for physically meaningful
values of N. Namely, if one takes �n �	n�2=1 as done in
�1,2� fulfilling of the above equation demands N=1/2. On
the other hand if we try to calculate �n �	n�2 from the con-
dition N=1 we arrive at paradox �n �	n�2=1+�n �	n�2.

Choosing the trial state �3� we obtain

�
n

�	n�2
1 + �
n

�	n�2� = N�1 + �
n

�	n�2 +
1

2
�n

�	n�2�2� .

�11�

Similarly imposing �n �	n�2=1 leads to N=4/5 while the
attempt of evaluation of normalization condition from the
last equation substituting N=2 leads to controversial result
�n �	n�2=−2.

The single formally meaningful result, i.e., the one that
does not lead to the above-listed controversial results, can be
obtained if, contrary to Pang’s interpretation of the trial
states, one imposes the condition N=1 to the trial function
�3�. In this case, one obtains �n �	n�2=�2. At this stage,
however, we must note that in spite of the formal consis-
tency, this demand is physically meaningless since the vector
of state in the form �3� represents a kind of two-particle
ansatz and therefore the restriction of N=1 is meaningless.
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The origin of these controversies lies in the fact that the
trial states �2� and �3� are not the eigenstates of the exciton
number operator but represent an unusual superposition of
three states with zero, one, and two excitons present. Thus, in
view of these arguments, description of the solitons in the
systems with the fixed number of quasiparticles is meaning-
less. If, however, the exciton number is not conserved, trial
states �2� and �3� could be applied but N should be left
unspecified while the examination of the possible advantages
of such an approach with respect to the alternative ones �co-
herent state ansatz, for example� demands separate analysis.

The above facts have significant consequences for the cal-
culation of GSE and derivation of the equations of motion
for exciton �	n� and phonon ��q� variables. More precisely,
in contrast to Davydov’s approach where GSE follows sim-
ply after the substitution of the soliton solutions in �	 �H �	�
and after the explicit calculation of corresponding sums �in-
tegrals�, in Pang’s approach, due to the fact that �	� is not
normalized, GSE should be calculated by means of

Egs =
�	�H�	�
�	�	�

. �12�

Furthermore, while taking the expectation values of the pho-
non operators within DA corresponds simply to the substitu-
tion of aq and aq

† with �q and �q
*, in Pang’s approach it

becomes

�	�aq
†�	� = �	�	��q

*, �	�aq�	� = �	�	��q. �13�

The above-mentioned facts have been overseen in deriving
the equations of motion for phonon amplitudes and in calcu-
lating GSE. In particular, in deriving of the equation of mo-
tion for the lattice deformation field �see Eqs. �13�–�15� in
�1��, incorrect expectation values for the lattice displacement
field and momentum operators in trial states �2� and �3� were
used. Correct expressions should be multiplied by �	 �	�,
i.e., they would read �	�t� �un �	�t��= �	 �	�n�t� and
�	�t� � Pn �	�t��= �	 �	��n�t�. In such a way, the resulting
equation of motion for the lattice displacement field and con-
sequently the soliton equation that follows in the final step,
are inconsistent with the initially introduced ansatz specified
through the choice of trial states as �2� and �3�. For that
reason final results are not reliable and the estimation of the
validity of Pang’s theory with the respect to the DST de-
mands consistent evaluation of evolution equations and cal-
culation of GSE. Obtained results should be compared with
the ones following on the basis of DA, as shown below. Let
us start with the evaluation of the equations of motion for
quasiparticle wave functions and coherent amplitudes. It may
be done by means of the time-dependent variational principle
�TDVP� that in the final step results in the following set of
evolution equations:

i � 	̇n =
1

�

�H
�	n

* , i � �̇q =
1

�	�	�
�H
��q

* . �14�

Here parameter � is specific for each particular choice of trial
state and value of N. In particular it attains unity at �=1 for
the both variant of one-particle states. For the two-particle
trial state �3�, together with the constraint N=1, we have

�=1; �=2�2 for the particular choice of two-particle ampli-
tude in trial state �5� 	m,n=	m	n. We made such choice for
the sake of comparison with Pang’s results.

Further procedure is straightforward and standard so we
shall skip the most of the calculation details. Thus, irrespec-
tive of the explicit choice trial state, in the final step we
obtain the known nonlinear Schrödinger equation for exciton
wave function, which in the continuum limit attains the fa-
miliar form

i � 	̇ = �� − 2J�	 − JR0
2	xx − G�	�2	 . �15�

Nonlinearity parameter G is proportional to the small-
polaron binding energy


EB =
1

N
�

q

�Fq�2

��q
�

4�1
2

M�B
2 �

and different for each of the above-discussed variants of the
trial state.

Equation �15� possesses the well-known bell-shaped soli-
ton solution

	 =� �

2�

1

cosh �
R0

x
e−i�t. �16�

Here � and �, the so-called soliton parameters depend again
on the choice of trial state and N. More precisely, �=�2 for
the above-postulated two-particle DA. For other choices,
�=1.

We have calculated GSE employing each of the above-
discussed trial states and our results are presented in Table I.

The choice of trial function �3� and N=1 leads to the
same value of GSE as the DA. Formally applying the proce-
dure to all other cases, it is obvious that DA gives lower
estimates of the exciton-phonon GSE in one- and two-
particle cases. Thus the soliton solutions following on the
basis of the original Davydov’s proposal are comparably
more stable than the ones that result from the unusual trial
state proposed by Pang. Pang’s belief that the so-proposed
trial states yield lower values for GSE and, consequently,
more stable soliton solutions is based upon the inconsistent
calculations that arise, when it is overlooked that these new

TABLE I. Comparison of the system GS energies calculated
within different proposals for trial state.

Trial state G � EGS

One-particle DA 2EB EB

J
−

EB
2

3J

One-particle Pang 16EB

�2

EB

2J
−

EB
2

24J

Two-particle DA 4EB 2EB

J
−

8EB
2

3J

Two-particle Pang 16EB

5

4EB

5J
−

64EB
2

375J
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states are not normalized. This oversight results in erroneous
equations of motion for phonon variables that imply all sub-
sequent results and, in the final instance, incorrect expres-
sions for GSE are obtained.

The aim of this comment was to clarify the effect that is
achieved by using improved Hamiltonian and so-called qua-
sicoherent trial states proposed by Pang for the study of en-
ergy transfer in molecular chains. We have shown that the
improper normalization leads to many inconsistencies and
that even if one disregards the inherent controversies con-
nected with the normalization of exciton amplitudes, Pang’s

theory—due to the fact that it predicts either equal or higher
values of GSE—is still inferior with the respect to the DA.
We have also indicated that there exist alternative approaches
using complete coherent or multiquanta states proposed
much earlier �9,10�, which do not encounter such problems,
but lead to the same results as the standard DA.
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lic of Serbia.
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